Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Potassium pentaborate

Qi Wu

Department of Power Engineering, Xian Aeronautical College, Xian 710077, People's Republic of China
Correspondence e-mail: 62010375@163.com

Received 24 August 2011; accepted 21 October 2011

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{B}-\mathrm{O})=0.003 \AA$; R factor $=0.030 ; w R$ factor $=0.072$; data-to-parameter ratio $=10.7$.

The title compound, $\mathrm{K}\left[\mathrm{B}_{5} \mathrm{O}_{7}(\mathrm{OH})_{2}\right]$, was obtained from a hydrothermal reaction. The structure is composed of one K^{+} cation and a polyborate ${ }_{\infty}^{1}\left[\mathrm{~B}_{5} \mathrm{O}_{7}(\mathrm{OH})_{2}\right]^{-}$anion, which consists of two six-membered rings linked by a common BO_{4} tetrahedron. The $\left[\mathrm{B}_{5} \mathrm{O}_{7}(\mathrm{OH})_{2}\right]^{-}$units are linked together through two exocyclic O atoms to neighbouring units, forming a helical chain structure extending parallel to [010]. Adjacent chains are further connected into a three-dimensional structure by $\mathrm{K}-\mathrm{O}$ bonds and weak $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbond interactions.

Related literature

For the nonlinear optical properties of alkali metal borates, see: Mori et al. (1995). For syntheses and crystal structures in the $\mathrm{K}_{2} \mathrm{O}-\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{H}_{2} \mathrm{O}$ system, see: Marezio (1969); Salentine (1987); Wang et al. (2006); Zhang et al. (2005).

Experimental

Crystal data

$\mathrm{K}\left[\mathrm{B}_{5} \mathrm{O}_{7}(\mathrm{OH})_{2}\right]$
$M_{r}=239.17$
Monoclinic, $P 2_{1_{1}} / c$
$V=741.01(5) \AA^{3}$
$Z=4$
$a=7.6690$ (3) A
Mo $K \alpha$ radiation
$b=9.0445$ (3) A
$\mu=0.74 \mathrm{~mm}^{-1}$
$c=12.2304$ (4) \AA
$T=100 \mathrm{~K}$
$0.14 \times 0.09 \times 0.07 \mathrm{~mm}$
$\beta=119.132$ (2) ${ }^{\circ}$

Data collection

Bruker APEXII diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
$T_{\text {min }}=0.878, T_{\text {max }}=0.910$
13002 measured reflections 1452 independent reflections 1343 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.027$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030 \quad 136$ parameters
$w R\left(F^{2}\right)=0.072$
$S=1.00$
1452 reflections

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.77 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.87 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 10-\mathrm{H} 10 \mathrm{~A} \cdots \mathrm{O}^{\text {i }}$	0.84	2.36	3.179 (2)	164
$\mathrm{O} 12-\mathrm{H} 12 A \cdots \mathrm{O} 11^{\text {ii }}$	0.84	2.30	3.0346 (19)	147
$\mathrm{O} 12-\mathrm{H} 12 A \cdots \mathrm{O} 4^{\text {ii }}$	0.84	2.50	3.170 (2)	138

Symmetry codes: (i) $x-1,-y-\frac{1}{2}, z-\frac{1}{2}$; (ii) $-x,-y,-z$.
Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL.

The author thanks the National Natural Science Foundation of China (grant No. 20871078) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2113).

References

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Marezio, M. (1969). Acta Cryst. B25, 1787-1795.
Mori, Y., Kuroda, I., Nakajima, S., Sasaki, T. \& Nakai, S. (1995). Jpn J. Appl. Phys. 34, 296-298.
Salentine, C. G. (1987). Inorg. Chem. 26, 128-132.
Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.
Wang, G. M., Sun, Y. Q., Zheng, S. T. \& Yang, G. Y. (2006). Z. Anorg. Allg. Chem. 632, 1586-1590.
Zhang, H. X., Zhang, J., Zheng, S. T. \& Yang, G. Y. (2005). Cryst. Growth Des. 5, 157-161.

supplementary materials

Acta Cryst. (2011). E67, i67 [doi:10.1107/S1600536811043807]

Potassium pentaborate

Q. Wu

Comment

Boron can form a large variety of compounds due to the variability of the coordination environment about B . In the past several decades, much interest has focused on studies of alkali metals borates because some of these compounds show interesting physical properties, such as nonlinear optical behavior for $\mathrm{CsLiB}_{6} \mathrm{O}_{10}$ (Mori et al., 1995). So far, several phases had been obtained in the $\mathrm{K}_{2} \mathrm{O}-\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{H}_{2} \mathrm{O}$ system (Marezio, 1969; Salentine, 1987; Zhang et al., 2005; Wang et al., 2006). In this paper, we describe the synthesis and the crystal structure of a new potassium borate, $\mathrm{K}\left[\mathrm{B}_{5} \mathrm{O}_{7}(\mathrm{OH})_{2}\right]$.

It features one K^{+}cation and a ${ }_{\infty}{ }_{\infty}\left[\mathrm{B}_{5} \mathrm{O}_{7}(\mathrm{OH})_{2}\right]^{-}$polyborate anion (Fig.1), which is closely related to the reported compound of $\mathrm{K}\left[\mathrm{B}_{5} \mathrm{O}_{7}(\mathrm{OH})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (Zhang et al., 2005).

The ${ }^{1}{ }_{\infty}\left[\mathrm{B}_{5} \mathrm{O}_{7}(\mathrm{OH})_{2}\right]^{-}$ion consists of two six-membered rings linked by a common B atom. Each six-membered ring consists of one BO_{3} triangle, one $\mathrm{BO}_{2}(\mathrm{OH})$ triangle and a common BO_{4} tetrahedron. The $\left[\mathrm{B}_{5} \mathrm{O}_{7}(\mathrm{OH})_{2}\right]^{-}$units are linked via two exocyclic O atoms (O 8 and O 8 A) to neighboring units, forming a 1-D helical chainlike structure (Fig. 2). Adjacent chains are further connected into a 3-D structure by $\mathrm{K}-\mathrm{O}$ bonds and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds interactions, as shown in Fig.3.

Experimental

All reagents used in the synthesis were analytic grade and were used without further purification. A mixture of $\mathrm{GaO}(\mathrm{OH})$ $(0.06 \mathrm{~g}), \mathrm{H}_{3} \mathrm{BO}_{3}(0.47 \mathrm{~g}), \mathrm{KNO}_{3}(0.15 \mathrm{~g})$ and distilled water $(0.1 \mathrm{ml})$ was sealed in a Teflon-lined bomb and heated at 483 K for 3 d and then cooled to room temperature. The resulting colorless crystals were washed with hot deionized water and dried in a vacuum dryer to a constant mass at room temperature.

Refinement

H atoms bonded to O 10 and O 12 atoms were positioned geometrically, and were refined riding with $\mathrm{O}-\mathrm{H}=0.84 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

supplementary materials

Figures

Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) $-x,-1 / 2+y,-1 / 2-z$.

Fig. 2. The one-dimensional chain structure constructed by $\left[\mathrm{B}_{5} \mathrm{O}_{7}(\mathrm{OH})_{2}\right]^{-}$units. B, O and H atoms are shown as green, red and yellow, respectively.

Potassium pentaborate

Crystal data

$\mathrm{K}\left[\mathrm{B}_{5} \mathrm{O}_{7}(\mathrm{OH})_{2}\right]$
$M_{r}=239.17$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=7.6690$ (3) \AA
$b=9.0445$ (3) \AA
$c=12.2304$ (4) \AA
$\beta=119.132$ (2) ${ }^{\circ}$
$V=741.01(5) \AA^{3}$
$Z=4$
$F(000)=472$
$D_{\mathrm{x}}=2.144 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6851 reflections
$\theta=3.0-30.5^{\circ}$
$\mu=0.74 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Rod, colourless
$0.14 \times 0.09 \times 0.07 \mathrm{~mm}$

Data collection

Bruker APEXII
diffractometer
Radiation source: fine-focus sealed tube graphite
Detector resolution: 83.33 pixels mm^{-1}

1452 independent reflections
1343 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\max }=26.0^{\circ}, \theta_{\min }=3.0^{\circ}$

φ and ω scans

Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
$T_{\text {min }}=0.878, T_{\text {max }}=0.910$
13002 measured reflections
$h=-9 \rightarrow 8$
$k=-11 \rightarrow 11$
$l=-15 \rightarrow 15$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.026 P)^{2}+1.7263 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.77 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.87 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\text {eq }}$
O4	$-0.2494(2)$	$-0.13046(15)$	$-0.14778(13)$	$0.0093(3)$
O5	$-0.0757(2)$	$-0.32468(15)$	$-0.19460(13)$	$0.0095(3)$
O6	$0.0327(2)$	$-0.25360(15)$	$0.01760(12)$	$0.0096(3)$
O7	$-0.4011(2)$	$-0.14669(15)$	$-0.50951(12)$	$0.0097(3)$
O8	$0.1858(2)$	$-0.45303(15)$	$-0.01975(13)$	$0.0091(3)$
O9	$-0.4141(2)$	$-0.26660(15)$	$-0.33902(12)$	$0.0095(3)$
O10	$-0.6325(2)$	$-0.33377(16)$	$-0.55281(13)$	$0.0111(3)$
H10A	-0.7360	-0.3223	-0.5465	0.017^{*}
O11	$-0.1489(2)$	$-0.08947(15)$	$-0.30142(13)$	$0.0101(3)$
O12	$-0.1416(2)$	$-0.06260(16)$	$0.05911(13)$	$0.0108(3)$
H12A	-0.0286	-0.0380	0.1172	0.016^{*}
B1	$0.0458(3)$	$-0.3419(2)$	$-0.0712(2)$	$0.0088(4)$
B2	$-0.1192(3)$	$-0.1489(2)$	$-0.0252(2)$	$0.0094(4)$

B3	$-0.4815(3)$	$-0.2516(2)$	$-0.4635(2)$	$0.0095(4)$
B4	$-0.2217(3)$	$-0.2019(2)$	$-0.2457(2)$	$0.0093(4)$
B5	$0.2421(3)$	$-0.5629(2)$	$-0.0753(2)$	$0.0091(4)$
K1	$0.34799(7)$	$-0.07665(5)$	$-0.26481(4)$	$0.01448(14)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O4	$0.0097(7)$	$0.0089(7)$	$0.0088(7)$	$0.0014(5)$	$0.0040(6)$	$0.0006(5)$
O5	$0.0104(7)$	$0.0097(7)$	$0.0085(7)$	$0.0015(5)$	$0.0047(6)$	$0.0002(5)$
O6	$0.0104(7)$	$0.0098(7)$	$0.0080(7)$	$0.0016(5)$	$0.0041(6)$	$-0.0002(5)$
O7	$0.0109(7)$	$0.0097(7)$	$0.0080(6)$	$-0.0017(6)$	$0.0040(6)$	$-0.0001(5)$
O8	$0.0102(7)$	$0.0092(7)$	$0.0077(6)$	$0.0014(5)$	$0.0043(6)$	$0.0001(5)$
O9	$0.0093(7)$	$0.0100(7)$	$0.0089(7)$	$-0.0010(5)$	$0.0041(6)$	$0.0008(5)$
O10	$0.0096(7)$	$0.0126(7)$	$0.0112(7)$	$-0.0027(6)$	$0.0051(6)$	$-0.0009(6)$
O11	$0.0092(7)$	$0.0112(7)$	$0.0085(7)$	$-0.0021(5)$	$0.0032(6)$	$0.0009(5)$
O12	$0.0098(7)$	$0.0115(7)$	$0.0095(7)$	$0.0018(5)$	$0.0035(6)$	$-0.0015(5)$
B1	$0.0095(10)$	$0.0070(10)$	$0.0105(10)$	$-0.0015(8)$	$0.0052(9)$	$-0.0004(8)$
B2	$0.0101(10)$	$0.0073(10)$	$0.0124(11)$	$-0.0014(8)$	$0.0067(9)$	$0.0003(8)$
B3	$0.0097(10)$	$0.0074(10)$	$0.0118(11)$	$0.0016(8)$	$0.0054(9)$	$-0.0003(8)$
B4	$0.0098(10)$	$0.0083(10)$	$0.0092(10)$	$0.0000(8)$	$0.0043(9)$	$0.0005(8)$
B5	$0.0100(10)$	$0.0082(10)$	$0.0111(10)$	$-0.0005(8)$	$0.0067(9)$	$0.0000(8)$
K1	$0.0143(2)$	$0.0188(3)$	$0.0091(2)$	$0.00475(18)$	$0.00474(18)$	$0.00124(17)$

Geometric parameters $\left({ }_{A},^{\circ}\right)$

O4-B2	1.347 (3)
O4-B4	1.464 (3)
O5-B1	1.342 (3)
O5-B4	1.482 (3)
O6-B1	1.391 (3)
O6-B2	1.391 (3)
O7-B5 ${ }^{\text {i }}$	1.381 (3)
O7-B3	1.391 (3)
O8-B1	1.379 (3)
O8-B5	1.386 (3)
B2-O4-B4	122.10 (16)
B1-O5-B4	121.96 (16)
B1-O6-B2	117.54 (16)
$\mathrm{B} 5{ }^{\mathrm{i}}-\mathrm{O} 7-\mathrm{B} 3$	118.31 (16)
B1-O8-B5	131.13 (17)
B3-O9-B4	121.29 (16)
B3-O10-H10A	109.4
B5 ${ }^{\text {i }}$-O11-B4	121.94 (16)
B2-O12-H12A	109.4
O5-B1-O8	123.92 (19)
O5-B1-O6	122.50 (18)

$\mathrm{O} 9-\mathrm{B} 3$	$1.356(3)$
$\mathrm{O} 9-\mathrm{B} 4$	$1.477(3)$
$\mathrm{O} 10-\mathrm{B} 3$	$1.362(3)$
$\mathrm{O} 10-\mathrm{H} 10 \mathrm{~A}$	0.8400
$\mathrm{O} 11-\mathrm{B} 5^{\mathrm{i}}$	$1.339(3)$
$\mathrm{O} 11-\mathrm{B} 4$	$1.477(3)$
$\mathrm{O} 12-\mathrm{B} 2$	$1.369(3)$
$\mathrm{O} 12-\mathrm{H} 12 \mathrm{~A}$	0.8400
$\mathrm{~B} 5-\mathrm{O} 11^{\mathrm{ii}}$	$1.339(3)$
$\mathrm{B} 5-\mathrm{O} 7 \mathrm{ii}$	$1.381(3)$
$\mathrm{O} 12-\mathrm{B} 2-\mathrm{O} 6$	$119.56(18)$
$\mathrm{O} 9-\mathrm{B} 3-\mathrm{O} 10$	$123.79(19)$
$\mathrm{O} 9-\mathrm{B} 3-\mathrm{O} 7$	$121.38(18)$
$\mathrm{O} 10-\mathrm{B} 3-\mathrm{O} 7$	$114.82(17)$
$\mathrm{O} 4-\mathrm{B} 4-\mathrm{O} 11$	$108.14(16)$
$\mathrm{O} 4-\mathrm{B} 4-\mathrm{O} 9$	$108.59(16)$
$\mathrm{O} 11-\mathrm{B} 4-\mathrm{O} 9$	$112.07(16)$
$\mathrm{O} 4-\mathrm{B} 4-\mathrm{O} 5$	$111.51(16)$
$\mathrm{O} 11-\mathrm{B} 4-\mathrm{O} 5$	$109.41(16)$
$\mathrm{O} 9-\mathrm{B} 4-\mathrm{O} 5$	$107.14(16)$
$\mathrm{O} 11 \mathrm{ii}-\mathrm{B} 5-\mathrm{O} 7^{\mathrm{ii}}$	$122.64(18)$

sup-4

supplementary materials

$\mathrm{O} 8-\mathrm{B} 1-\mathrm{O} 6$	$113.46(17)$
$\mathrm{O} 4-\mathrm{B} 2-\mathrm{O} 12$	$118.11(18)$
$\mathrm{O} 4-\mathrm{B} 2-\mathrm{O} 6$	$122.32(18)$
$\mathrm{B} 4-\mathrm{O} 5-\mathrm{B} 1-\mathrm{O} 8$	$-178.99(18)$
$\mathrm{B} 4-\mathrm{O} 5-\mathrm{B} 1-\mathrm{O} 6$	$5.3(3)$
$\mathrm{B} 5-\mathrm{O} 8-\mathrm{B} 1-\mathrm{O} 5$	$3.4(3)$
$\mathrm{B} 5-\mathrm{O}-\mathrm{B} 1-\mathrm{O} 6$	$179.45(18)$
$\mathrm{B} 2-\mathrm{O} 6-\mathrm{B} 1-\mathrm{O} 5$	$3.0(3)$
$\mathrm{B} 2-\mathrm{O} 6-\mathrm{B} 1-\mathrm{O} 8$	$-173.13(17)$
$\mathrm{B} 4-\mathrm{O} 4-\mathrm{B} 2-\mathrm{O} 12$	$171.24(17)$
$\mathrm{B} 4-\mathrm{O} 4-\mathrm{B} 2-\mathrm{O} 6$	$-10.0(3)$
$\mathrm{B} 1-\mathrm{O} 6-\mathrm{B} 2-\mathrm{O} 4$	$-0.7(3)$
$\mathrm{B} 1-\mathrm{O} 6-\mathrm{B} 2-\mathrm{O} 12$	$178.03(17)$
$\mathrm{B} 4-\mathrm{O} 9-\mathrm{B} 3-\mathrm{O} 10$	$165.13(18)$
$\mathrm{B} 4-\mathrm{O} 9-\mathrm{B} 3-\mathrm{O} 7$	$-16.1(3)$
$\mathrm{B} 5-\mathrm{O} 7-\mathrm{B} 3-\mathrm{O} 9$	$3.6(3)$
$\mathrm{B} 5-\mathrm{O} 7-\mathrm{B} 3-\mathrm{O} 10$	$-177.49(17)$

Symmetry codes: (i) $-x, y+1 / 2,-z-1 / 2$; (ii) $-x, y-1 / 2,-z-1 / 2$.

$\mathrm{O} 11{ }^{\text {iii }}$ - $\mathrm{B} 5-\mathrm{O} 8$	123.92 (19)
$\mathrm{O} 7^{\mathrm{ii}}-\mathrm{B} 5-\mathrm{O} 8$	113.41 (18)
B2-O4-B4-O11	-103.7 (2)
$\mathrm{B} 2-\mathrm{O} 4-\mathrm{B} 4-\mathrm{O} 9$	134.42 (18)
$\mathrm{B} 2-\mathrm{O} 4-\mathrm{B} 4-\mathrm{O} 5$	16.6 (3)
$\mathrm{B} 5{ }^{\mathrm{i}}-\mathrm{O} 11-\mathrm{B} 4-\mathrm{O} 4$	-125.34 (19)
$\mathrm{B} 5{ }^{\mathrm{i}}-\mathrm{O} 11-\mathrm{B} 4-\mathrm{O} 9$	-5.7 (3)
$\mathrm{B} 5{ }^{\mathrm{i}}-\mathrm{O} 11-\mathrm{B} 4-\mathrm{O} 5$	113.01 (19)
B3-O9-B4-O4	135.83 (18)
B3-O9-B4-O11	16.4 (3)
B3-O9-B4-O5	-103.6 (2)
$\mathrm{B} 1-\mathrm{O} 5-\mathrm{B} 4-\mathrm{O} 4$	-14.3 (3)
B1-O5-B4-O11	105.3 (2)
$\mathrm{B} 1-\mathrm{O} 5-\mathrm{B} 4-\mathrm{O} 9$	-132.97 (18)
$\mathrm{B} 1-\mathrm{O} 8-\mathrm{B} 5-\mathrm{O} 11^{\text {ii }}$	-6.9 (3)
$\mathrm{B} 1-\mathrm{O} 8-\mathrm{B} 5-\mathrm{O} 7{ }^{\text {ii }}$	175.04 (18)

Hydrogen-bond geometry ($\AA,^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 10-\mathrm{H} 10 \mathrm{~A} \cdots \mathrm{O} 6^{\text {iii }}$	0.84	2.36	$3.179(2)$	164
$\mathrm{O} 12 — \mathrm{H} 12 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{iv}}$	0.84	2.30	$3.0346(19)$	147
$\mathrm{O} 12 — \mathrm{H} 12 \mathrm{~A} \cdots \mathrm{O} 4^{\text {iv }}$	0.84	2.50	$3.170(2)$	138

Symmetry codes: (iii) $x-1,-y-1 / 2, z-1 / 2$; (iv) $-x,-y,-z$.

supplementary materials

Fig. 1

Fig. 2

Fig. 3

